Complexity of Banach space valued and parametric integration

نویسندگان

  • Thomas Daun
  • Stefan Heinrich
چکیده

We study the complexity of Banach space valued integration. The input data are assumed to be r-smooth. We consider both definite and indefinite integration and analyse the deterministic and the randomized setting. We develop algorithms, estimate their error, and prove lower bounds. In the randomized setting the optimal convergence rate turns out to be related to the geometry of the underlying Banach space. Then we study the corresponding problems for parameter dependent scalar integration. For this purpose we use the Banach space results and develop a multilevel scheme which connects Banach space and parametric case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of Banach space valued and parametric stochastic Itô integration

We present a complexity analysis for strong approximation of Banach space valued and parameter dependent scalar stochastic Itô integration, driven by a Wiener process. Both definite and indefinite integration are considered. We analyze the Banach space valued version of the EulerMaruyama scheme. Based on these results, we define a multilevel algorithm for the parameter dependent stochastic inte...

متن کامل

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

متن کامل

On the randomized complexity of Banach space valued integration

We study the complexity of Banach space valued integration in the randomized setting. We are concerned with r-times continuously differentiable functions on the d-dimensional unit cube Q, with values in a Banach space X, and investigate the relation of the optimal convergence rate to the geometry of X. It turns out that the n-th minimal errors are bounded by cn−r/d−1+1/p if and only if X is of ...

متن کامل

POINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let  be a non-emp...

متن کامل

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013